
% ;

HOW TO CLUSTER IN PARALLEL WITH NEURAL

NETWORKS

Behzad Kamgar-Parsi

Center for Automation Research

University of Maryland

College Park, MD 20742

J. A. Gualtieri

Code 635

NASA GSFC

Greenbelt, MD 20771

Behrooz Kamgar-Parsi

Dept. of Computer Science

George Mason University

Fairfax, VA 22030

Judy E. Devaney

Science Applications Research

4400 Forbes Blvd.

Lanham, MD 20706

ABSTRACT

Partitioning a set of N patterns in a d-dimensional met-

ric space into K clusters - in a way that those in a given
cluster are more similar to each other than the rest -

is a problem of interest in astrophysics, image analysis
K _

and other fields. As there are approximately "Ei- possible
ways of partitioning the patterns among K clusters, find-

ing the best solution is beyond exhaustive search when N

is large. We show that this problem in spite of its expo-

nential complexity can be formulated as an optimisation
problem for which very good, but not necessarily opti-

mal, solutions can be found by using a neural network.

To do this the network must start from many randomly
selected initial states. The network is simulated on the

MPP (a 128×128 SIMD array machine), where we use

the massive parallelism not only in solving the differen-

tial equations that govern the evolution of the network,

but also by starting the network from many initial states
at once thus obtaining many solutions in one run. We

obtain speedups of two to three orders of magnitude over

serial implementations and the promise through Analog

VLSI implementations of speedups comensurate with hu-

man perceptual abilities.

Keywords: Combinatorial Optimization, Synchronous

Analog Network, Parallel Simulation, SIMD.

INTRODUCTION

Problems that involve data analysis are becoming in-

creasingly severe in that data sets are becoming very large
and their rate of acquisition is growing rapidly. It is clear

that humans possess immense computational power for

solving certain problems through visualization and that

what is needed is the development of algorithms that have

some of these capabilities.

The value of neural networks - whose development has

been motivated by human beings' computational capabil-

ities - as a computational device is yet to be explored. In

fact, little is known about the reliability and complexity

of these algorithms, and how they scale with the size of

the problem. The work we present in this paper is an

attempt to answer some of these questions. For this, we

will concentrate on the problem of data clustering - a

problem of interest in astrophysics, image analysis and

other fields. The conjecture is that because of the many
connections among neurons, neural networks should be

particularly useful for the class of problems that involve

collective decision making, of which one example is un-

supervised clustering. Here the patterns must decide to-
gether how to partition themselves into subsets according

to a given criterion. The problem considered here, as in

all partitioning problems, is a discrete optimization with

a goodness-of-fit criterion. By embedding this discrete

problem in the continuous space of an analog network
one can perform a downhill search on the energy surface

which is more purposeful and effective than the search

in the discrete space. Until hardware implementation of

analog neural networks in VLSI become available - which

is expected in the next few years [1] - simulation is going

to be an indispensible tool in the study and design of these
systems. Analog networks are intrinsically synchronous

and hence well suited for simulation on massively parallel
SIMD machines.

In this paper, we simulate the neural net we propose for

solving the clustering problem on the MPP [a 128× 128
SIMD array machine with 1024 bits of local memory per

processor]. The issue of performance of neural net algo-
rithms on parallel machines is also addressed. Before we

proceed, however, we will discuss the clustering problem
in some detail.

31

PRE.CED;(¢G P_i, CE BLAh;K NOT F._LMED

CH2649-2/89/0000/0031501.00 © 1988 IEEE th_fL....__._ _ tN! ENItON_.L¥ l=,ll.Al_

THE CLUSTERING PROBLEM

By clusteringwe mean partitioninga setofN patterns

(thepatternsare representedas pointsina d-dimensional

metric space) into K clustersin a way that those in a

given clusterare more similarto each other than the
K N

rest. As there are approximately -_- possibleways of

partitioningthe patterns among K clusters[2],the prob-

lem has exponentialcomplexity and findingthe best so-

lutionisbeyond exhaustivesearch.As isoftenemployed,
we let our criterionfor best solutionbe the minimum

square-error. That is,representingthe patterns by d-

dimensional points {_li = i,...,N}, the best solution

isthe one minimizing X2 v-.N _.(p)_]_)2 with re-2..#i=l_ri

spect to {]_IP = 1,....K}. Here clusterp containsthe

subsetof the points,{_(P)},and itscentroidisgiven by

= _= I • where Np isthe number of points in

the cluster.A partitioningbased on such a criterionis

alsoknown as minimum variancepartioning.Because of

the complexity of the problem, findingthe best solution

may not be possible.This, however, isnot a major con-

cern,because in practiceusuallyonly a good solutionis
sufficient.

Due to the importance of this problem many meth-

ods have been proposed by variousresearchers.(See Jain

and Dubes [3]for a survey of the literature.)Many of

theseapproaches are based on iterativeschemes and of-

ten the differencesbetween the suggested algorithmsare

quitesubtle.The number ofclustersK may or may not

be fixed.For a given value of K, the essenceofiterative

algorithms isas follows.

After the initialpartioningofthe patternsintoK clus-

ters,theircentroids,i.e.seed pointsin the d-dimensional

metricspace ofthe patterns,are computed. Each pattern

isthen assignedto the clusterwith the nearestseed point

and new centroidsare computed. The processisrepeated

untilthe partitioningceasestochange. However, the pro-

cessof the computation ofnew centroidscan be carried

out in two ways: (i)Keep the centroidsfixeduntilthe

distancesofallpatterns tothe K centroidsarecomputed

[41;(ii)Update centroidsas frequentlyas one patternis
found to be closerto the centroidof a clusterother than

the one itisassignedto. In thiscase,the patternisimme-

diatelyreassignedand the centroidsof the winning and

the losingclustersare updated [5].This method issome-

times referredto as K-means. Note that for a parallel

machine, where the distancesofthe patterns from clus-

ter centroldscan be computed simultaneously,the first

approach appears to be more efficient.

The neural net approach that we propose has many
similaritieswith the iterativescheme describedabove. As

willbe explained laterin more details,the major differ-

ence,however, isthat the neural net allowsa given pat-

tern to belong toseveralclustersuntilthe finaliteration.

That is,at leastduring the execution of the algorithm,

a given pattern belongs to allclusters,though with dif-

ferentweights. The closestconventionalmethod to this

is the one proposed by Gordon and Henderson [61. In

theirmethod, however, the sum ofthe weightsfor every

pattern isrestrictedto one at any given iteration;thus,

itdose not possessthe fullflexibilityofneural networks.

As for the initialclustercentroids,one may take the

firstK pointsofthe input data,which isvery simple and

inexpensive;or ifone suspects the input points are pre-

arranged in some specialway, one may choose atrandom

any K pointsof the input data [7].More elaborateand

expensive methods for choosing more promising initial

centroidshave been proposed in the literature(see Ref.

[S]and [3]).Such methods, however, are not of interest

to us.

OPTIMIZATION WITH NEURAL NETS

It has been recognized in recent years that artificial

neural networks have computational properties [9,10].
The Hopfield model of neural network, which we use in

thiswork, isparticularlysuitablefor solvingcertainop-

timizationproblems. A neuron isa simple nonlinearpro-

cessorthatisconnected to many (possiblyall)other neu-

rons in the network; it adds up the signalsitreceives

from other neurons and firesa signalaccordingly.The

state of the network, that is the firingrates or activi-

tiesof the neurons, through interactions with each other,
change with time but eventually the network settles into

a steady state where the neuronal activities remain con-

stant. The energy of the Hopfield network is Lyapunov

(i.e.itdoes not increasewith time) and itsminima are

the steady statesof the network. It isthisproperty of

neural networks that isused in optimization. The ap-

proach istocast the problem in terms of an energy func-

tionthat isthen minimized by the correspondingnetwork

as itevolvesspontaneously from some randomly selected

initialstatetostatesoflowerenergy.The energyfunction

has typicallymany minima that representvalidsolutions

to the problem; deeper minima correspond to good solu-

tionsand the deepest minimum to the best solution.

In thispaper we use analog neural nets,because they

outperform digitalnets insolvingoptimizationproblems

[9,11].Many problems ofinterest,includingthe problem

we addressinthispaper,can be castinterms ofan energy

function,E, that isquadratic in the neuronal activities

and has the form {91,

E = -_ _=1i=1 i=1 i=1

(1)
Here n is the number of neurons in the network, and

32

P_ (0 _ _ < I) is the activityor firingrate of neuron

i. The firstterm in (I) isthe interactionenergy among

neurons, and the elements ofthe connectionmatrix,T_y--

Ti_ = - b'PVb'_#,°2Eare completely determined from g. In the
second term Ii is the bias or activity threshold of neuron

i. The third term encourages the network to operate in

the interior of the n dimensional unit cube {0 < V_ _ 1}
that forms the state space of the system. In this term r

is the self-decay time of the neurons, and g(u), a sigmoid
function, is the gain or transfer function of the neuron8

that relates the input t_ to the output V_. A standard

form for g, which we will also use, is

1 1
V_ = g(u_} = _(1 + tanh u_)= (2)UO 1 -{- e-2u_/u_ '

where u0 determines the steepness of gain. The neuronal

activities, V_, as well as the input signals, u_, depend on
time t. The evolution of the network is determined by

the n coupled ordinary differential equations, duddt =
-aE/aV_, which are

f_

_ u, + + I,. (3)
dt r

_'=1

We will set r = 1, so that time is measured in units of
• . Note that the blas-term can be eliminated from the

energy and instead incorporated into the gain function if

we define _ = g(u_ - _'1_).

To find a solution (i.e. a minimum), we start the net-

work from a randomly selected state and let it evolve

freely until it reaches a minimum of the function E and

stops. As is usual in dealing with computationally in-
tractable problems, we find not just one but several solu-

tions by startingthe network from differentinitialstates,

and then take the best one as the 8olutionwhich may

or may not be the optimum. Since a neuralnetwork con-

vergesrapidlytoa minimum we can affordto run itmany

times thus ensuring thatwe findatleasta very good solu-

tion.Below, we discusshow to constructan appropriate

network forsolvingthisproblem.

CONSTRUCTION OF THE ENERGY FUNC-

TION

We want to partitiona set ofN pointsina 2-D plane

into the best K clusters(generalizationto arbitrarydi-

mensions istrivial)- best in the sense that sum of the

squaresofthe distancesofthe pointsfrom theirrespective

clustercentroids(i.e.sum of Uwithin clustervariances_)

isminimized. We formulate the problem in a manner

that can be solved by a neural network; that iswe cast

the problem in terms of an energy function that can be

minimised by the network.

The energy functionwillconsistoftwo parts:(i)con-

straintterms which make certaina point,at the end of

the search,belongs to one and only one cluster;(ii)the
cost term which isthe sum of the residualsand isthe

functionwe actuallywish to minimise. The formulation

can best be illustratedthrough an example. Let us con-

siderthe case where we wish to partitionN = 10 points

into K = 3 clusters.A possiblesolution(not necessarily

the best one) would be that,say,points1,2,6 and 9 be-

long to clusterA, points4 and 5 belong to clusterB, and

points3, 7,8 and 10 belong to clusterC. This particu-

larsolutioncan be representedby the 3)<10 rectangular

array given inTable 1,where the rows are labeledby the

clustersand the columns are labeledby the points.The

elements of thismatrix are 0 or 1 with the interpretation

that %lement A1=1" indicatesthat point 1 belongs to

clusterA, %lement BI=0" indicatesthat point 1 does

not belong toclusterB, and so on.

Table i: A possible solution for partitioning I0 points
into 3 clusters.

Cluster Points

1 2 3 4 5 6 7 8 9 10

A 1 1 0 0 0 1 0 0 1 0
B 0 0 0 1 1 0 0 0 0 0

C 0 0 1 0 0 0 1 1 0 1

If we think of the elements of this matrix as the activities

of neurons (n = K × N neurons altogether), and denote

them by V_, where p and i refer to the cluster and the
point, respectively, then the constraint part of the energy

function, E, can be expressed as

A N K K N K

;----1 p----1 q_p t/=1 p=l

where the coefficientsA and B are positiveconstants.

The A-term has itsminimum value (i.e. sero)ifineach

column (representing a point} at most one neuron is active
and the rest are off. The B-term has its minimum value

(alsosero)ifthe sum ofactivitiesineach column equalsi.

The two terms togetherenforcethe syntaz ofthe solution

given inTaMe 1.

There isan additionalconstraintthat we should, in

principle,includeinthe energyfunction:thateach cluster

should containatleastone point.In terms ofthe solution

matrix ofTable 1 itmeans that ineach row thereshould

be at leastone full_activeneuron• Such a constraintcan
• _ N 0be imposed by _p-10(1-_-:_-1 Vp_),where e(z)=

for z _<0 and O(z}= 1 for z > 0 isthe step function.

However, since thisterm isnonanalytic itsinclusionin

the energy functioncreatesproblems and a betterstrat-

egy appears tobe to leaveout thisterm and ratherreject

33

those solutions that violate this constraint. In our sim-

ulations of neural networks (several thousand triak) the

solutions never violated this constraint. Therefore, it ap-

pears that the absence of this constraint from the energy
function is of little consequence.

To complete the energy function we must also formulate

the cost term. We denote the square of the distance of

point i from the centroid of cluster p (i.e. the residual)

with R_ which is given by
= - xp)2+ (y, - Yp) , (5)

where (z_, y_) are the coordinates of point i, and (Xp, Yp)

are the coordinates of the centroid of cluster p. Here we
have chosen the Euclidean distance as the metric; but one

can define any metric one wants. Let us consider again

the solution represented by Table 1. The sum of residuals
or the cost for this solution is

(RA1 -{- RA2 "k RAe + RA9) -{- (RB4 Jr RB5)

+(Re3+ Re7 + Rcs + Re10), (0)

which can be written as
K N

(7)
p=l i----1

Hence the energy function E, including co6t and con-

attaint, for this problem can be expressed in the final form

ANKK NK

i=1 p=l qC6p /=1 p=l

C K ?¢

p=l /=1

where C is also a positive constant. When the constraints

(or the syntax) are satisfied the A-term and the/]-term
vanish and the energy function, E, reduces to just the

cost term, therefore deep mini_ of E correspond to good

solutions, and the deepest minimum to the best solution.

The network dynamics, obtained from -_E/SVp_, are

K K

- A v,,-B (v,,- I)-C +d-T== -u_
q_p q=l

(9)
Note that (8) is only the quadratic part of the energy

function corresponding to the first term in (1), and that

the two terms Ipi and -u_ in (9) come from the second

and third terms in (1), respectively.

To find a solution we assign random values between 0

and I to all the n = K x N neuronal activities, Vp/. Thus

the N points are partitioned into K clusters. Note that

the partitioning is not done in the proper sense that a

point belongs to a particular cluster and to no others;

rather_ point i is partitioned among all the K clusters

with varying strengths that are the magnitudes of Vp/,
that is, we interpret Vp/ as the strength of hypothesis

that point i belongs to cluster p. Hence the centroid of

cluster p is obtained from the weighted average
N N N N

i:I i:1 i:l i:I

00)
As the stateof the network changes with time the cen-

troids, as well as the residuals Rpi, also change. Start-
ing from this randomly selected initial state the network

evolves toward states of lower energy according to the

equations of motion (9), until it reaches a minimum en-

ergy state and stops. The downhill motion of the network

on the energy surface is guided toward a proper solution

(one that satisfies the constraints) by the A- and B-terms

and toward solutions of good quality by the C-term. As
the network is searching for a solution the constraints are

most surely violated since most neurons are partially ac-

tive. Only at the end of the search when a solution is

found the clustering becomes unambiguous. Note that

the energy E also contains other minima that do not cor-

respond to solutions (i.e. violate the syntax); such min-

ima when found by the network are of course rejected as
meaningless.

We remark that the cost term (7) can be written as a

linear function of activities such as RMV_ which is bias-
like rather than interaction-like. However, bias-like terms

are not as effective in breaking the symmetry among the

states that satisfy the syntax, and leave the energy land-

scape more fiat. Hence it will not be as easy for the

network to find valid solutions as it frequently becomes
stuck in the middle of the ,t-dimensional unit cube. This

is confirmed in our simulations, where the rate of success

for finding valid solutions drops significantly when we use
the linear form for the cost.

For simulations we have chosen the following values for

the parameters of the energy function: A = B --- 1,

C = 0.9/Rava, all Ix -- 1, and the gain function pa-

rameter Uo = 0.1. Scaling parameter C with the average

residual R_vo is necessary to ensure good solutions, be-

cause as the network evolves, the residuals become gen-
erally smaller and the cost term becomes less effective in

driving the network toward good solutions; this rescaling

of parameter C keeps the cost term of the same order of

magnitude as the syntax terms.

PARALLEL IMPLEMENTATION

We have simulated the behavior of the neural net on

the MPP. To do this we first generate a random initial

state {V_(t = 0)} and then solve the equations of motion

(9) to find which of the minima (or solutions) it converges
to. Solutions of ordinary differential equations, such as

34

theequationsof motion,lendthemselvesverynicelyto
a massively parallel computational approach. In addi-

tion, since we want to find several solutions starting from

different initial states - as is usual in computationally in-

tractable problems - we run several trials at once on the

MPP. Thus the speedup comes from parallel solution of

the differential equations as well as running several trials
at the same time.

We use the Euler method [12] with a fixed time step 6t

to solve the differential equations (9), i.e. we iterate the

set of n = K × N equations,
K

+ st) = u,At) + 8t{-u,At) - A F_̀
qCp

K

-B[2 Vq,(t)- 11- CR_Vp,(t) + Ipi}, (11)

q=l

until the system converges to a stationary state. The only

stopping criterion we use is when the changes in the fir-

ing rates become insignificant, i.e. when all IV_(t + 6t) -

Vp_(t)l <: e, where _ _: 1. After the network converges to

a solution, we must check if it is a valid solution that sat-

isfies the syntax, i.e. for every point i we must have one

V_ = 1 and all the rest V_ = 0 for q _ p. In analog net-
works the activity of a neuron can never become exactly

0 or 1 and can only reach close to the limits. Therefore,

if V_ < 7o we take V_ = 0, and if Vp_ > 1 - 71 we take

V_ = 1, where 70 and 71 are small positive numbers.
In the simulations we have chosen the following parame-

ter values: time step 6t ---- 10 -3, convergence parameter

----10 -4, and the syntax parameters 7o -- 71 = 0.2.

Mapping onto a SIMD parallel processor was accom-

plished by assigning a unique processing element to each

data point. With this requirement, all of the necessary

operations reduce to simple array arithmetic, parallel

sums, row and column broadcasts, and global boolean

tests. All of these are the strong points of a massively
parallel processor such as the MPP. Since the MPP has

16384 processors, fewer data points allow more separate

trials to be run in parallel Thus, for example, the 128

point case allowed for 128 trials with different starting
conditions to be run at the same time. The overhead to

the program to keep track of the different trials is trivial

since the data movement required is straightforward and

controlled by the programmer. The set of data points is

replicated for each trial run in parallel.

Each processor has stored in its memory its coordinate

values z_ and yi, the neuronal activities V_, input signals

u_, residues R_ for p -- 1,. -., K, convergence indicators
for each neuron, and other ancillary information. The

processing begins with the calculation of the centroids of

each cluster according to (10). This involves a simple ar-

ray multiplication of the zl and yi by V_ for each cluster

p = 1,. • •, K. This result is summed using the cascading

sum technique [131 and divided by the sum of V_ for each
cluster. These centroids are broadcast in parallel over the

remainder of the array using the MPP micrcoded broad-

cast primitive. This primitive, designed by Rudi Feiss

(described in [14]) is very fast using only 231 cycles to
broadcast a row or column - 128 32 bit numbers - to

the remainder of the rows or columns of the 128)<128

array. Then we calculate the residues from (5) which
involves more array arithmetic. The new input signals

u_(t + 6t) are calculated from (11) and the new activi-

ties V_(t + St) are calculated from the sigmoid function

(2). These are all array arithmetic operations. A boolean

mask for each cluster is created in parallel to record where

the new activities are different from the old activities by

more than the convergence parameter e. A logical 'or'

(implemented as the ANY function in MPP Pascal) on

the masks determines whether the convergence criteria

has been met for all activities. This logical 'or' directly
translates into a hardware instruction on the MPP and

thus allows simultaneous checking of conditions which on

a serial processor would have to be done individually. Up-

dating of all neurons for each trial was continued, regard-

less of whether a particular trial had converged, until all

trials had converged. Thus unnecessary bookkeeping time
is eliminated.

Thus the speed on the MPP is obtained from, (i) the

mapping which allows most operations to be formulated

in terms of array arithmetic, (il) the movement of data

among the processing elements which can be done with

parallel algorithms, and (iii) the global boolean tests
which are done by the machine hardware. For the case

of 128 points to be clustered into 5 clusters, 128 trials

were run simultaneously. This required 19 seconds per

500 iterations. The corresponding CPU time on a VAX

8800 was 2940 seconds (a speedup of over 150 times), and

21100 seconds on a VAX 11/780 (a speedup of about 1100

times).

EXAMPLES

To study the performance of the neural net we have

tested it on some examples. In the first data set, there are

128 points divided among 5 clusters with within-cluster

Gaussian distributions (Fig. la). Here the 5 clusters are
rather well defined and out of the 128 trials the neural

net found the optimum clusters 128 times. The aver-

age number of iterations for convergence was 4263; since

6t = 10-s_, the average convergence time is about 4.3r,

where _ is the decay time of a neuron. In VLSI im-

plementations of neural networks that are currently in

progress [1J, the decay time of neurons, r, is in the range
10 -s - 10 -s second, hence the convergence time of the

network should be in the range of a few micro-seconds to
a few milli-seconds. Note that from numerical solution of

35

differential equations one can only obtain an estimate of

the actual convergence time, because the number of itera-

tions for convergence depends on the value of the conver-

gence parameter as well as the time step. Obviously if the

convergence parameter is made smaller it will take more
iterations for the network to meet the convergence crite-

rion, resulting in a higher estimate for the convergence

time. On the other hand if the time step is made smaller

by, say, a factor of 10, it will take fewer than 10 times

the number of iterations to converge, thus resulting in a

lower estimate for the convergence time. Fig. 2 shows in

more detail the number of iterations for the convergence
of all the 128 trials.

The conventional method of Forgy [4] in 128 trials
found the best clusters only 46 times and various other

solutions 82 times. The average number of iterations for

convergence was 7. Clearly, in this example, the neural

net outperforms the conventional method, in that it tlnds

the best solution much more frequently. On the other

hand, the conventional method takes far fewer iterations

to converge than the neural net. But we should bear in
mind that these are simulations of the neural net, and

that the number of iterations needed for convergence is

not the true measure of the processing time of the net-

work. The convergence time of an actual analog VLSI
network must be measured in r, the characteristic time

of a neuron, which is in the micro to milli-second range/

To test the performance of the network in cases where
clusters are fuzzy, we started from the data points of Fig.

la, randomly selected 10_ of the points and distributed

them uniformly throughout the unit square {Fig. lb).

Thus we obtained 5 clusters with uniform background
noise. The neural net in 128 trials found the best clusters

28 times. It failed to find valid solutions statisfying the

syntax 46 times. This large number of failed solutions can

be interpreted as an indication that the clusters are fuzzy,
that there are outliers, and that perhaps the specified

number of clusters, K = 5, is too few. However, even

when the syntax is not satisfied we can extract a valid
solution with the following scheme. For each point i set

the largest V_ to 1 and all the other Vq_ with q _ p
to 0, and interpret this solution as the one favored by

the network, thus we obtain 128 solutions. Conventional

algorithms always find valid solutions and cannot give an

objective indication of the fussiness of clusters.

Similarly to Fig. lb, we generated other data sets by

increasing the background noise to 25_, 50_, 75_, and

100_ (i.e. no clusters). These data are shown in Fig.
lc-f. The results of partitioning the data among 5 cha-

fers obtained, in 128 trials, with the neural net and with

Forgy's method are listed in Table 2. The average es-

timated convergence times for the network are given in
units of _. Two points of note in this table are: (i) As the

5 clusters become less discernible the network increas-

ingly fails to satisfy the syntax indicating that clusters

are fussy and that 5 clusters are not sufficient. The con-

ventional method, on the other hand, always finds valid
solutions, and although the variety of solutions that it

finds increases (this is true in both methods) which may
be taken as a clue to the fuHiness of clusters it is not as

objective an indicator as the failure to satisfy the syntax;

(ii) When there are well defined clusters the neural net

performs better than the conventional techniques which is

reflected in the lower average X 2 (X2 is the sum of within-

cluster variances) for solutions found by the neural net.

And as clusters become fuzzier the quality of solutions
found by both methods become comparable.

Table 2: In this table the results obtained by Forgy's

conventional algorithm are compared with those by the

neural network. The Data refer to data points of Fig.
la-f. These are based on 128 trials.

Data Conventional

Iter Best Var Best_ Avg Var
a 7 0.62 36 1.23

b 8 1.06 34 1.57

c 8 1.95 12 2.27

d 10 2.94 2 3.14

e i0 3.88 I0 4.11

f i0 4.13 2 4.64

Data Neural Net

Time Best Var Best_ Avg Var
a 4 0.62 100 0.62

b 7 1.06 22 1.24

c 7 1.95 19 2.03

d 8 3.00 15 3.04

e 6 3.89 I 4.11

f 8 4.46 2 4.71

Synt%
100

64

9

0

1

0

Iter: is the average number of iterations for convergence.
Best Vat: is the variance of the best solution found.

BestS: is the percentage of trials that found the best
solution.

Avg Var: is the average variance of the solutions found.

Time: is the average estimated time of convergence in
units of r.

Synt_: is the percentage of trials that found solutions

satisfying the syntax.

In Fig. 3, we have plotted the trajectories of the cen-
troids of the 5 clusters as a function of time for all the 128

trials for the data of Fig. la. It can be seen that although

the centroids start from different places in different trials,

they all eventually converge to the same 5 points which
are the true centroids of the 5 clusters. This clearly shows

36

that the network succeeds, in every trial, in finding the [3]
structure in the data. In Fig. 4, we have plotted the cen-

troid trajectories for the data of Fig. If. The spreading

of trajetories (as contrasted to the contraction of trajec- [4]

tories in Fig. 3} of different trials, shows that where there

is no underlying structure in the data, the network does

not prefer any particular clustering and hence finds many

differentsolutions. [5]
CONCLUDING REMARKS

Preliminaryresultsforclusteringwith neuralnetworks

are promising.The neuralnet appears tooutperform con-

ventionaliterativetechniques,when thereare welldefined [6}
clusterssince itfinds better solutionsmore frequently.
And when clustersare fussy,or when the number ofclus-

terswe specifyisnot compatible with the structureof

data, the neural net indicatesthat itcannot find valid [7]

solutionseasily,and that something may be wrong. This

indicatorisan objectivemeasure and hence more reliable

than the usersupplied bounds and tolerancesforconven-

tionaltechniques.Work on largerdata setsisinprogress. [81

The clusteringcriterionwe have used in this paper,

that isminimum sum ofwithin-clustervariances,results [9]

in convex compact clusters.Often clustersare not round

or compact. By adding to the energy function,appropri-

ate terms that favor closenessofa point to itsneighbors [101
(and not just to the clustercentroid),one can design a

network that findsnon-convex elongatedclustersofvari-

ous shapes. Ill}
f

Simulationsofthe neuralnet on the MPP forthe clus-

teringproblem are two tothreeordersofmagnitude faster
than simulationson serialmachines such as the VAX 8800

and VAX 11/780. The speedup isdue toparallelsolution

of the differentialequations that govern the behavior of [12]
the network, aswell as running severaltrialsat the same

time. However, the real benefitof neural nets may lle

in the futurewhen they can be mapped on analog chips. [131
There are forecasts that analog VLSI neural nets will be-

come available in several years [1]. These devices will

have processing times in the micro to millS-second range,

making their performance comensurate with human per-
ceptual abilities. [141

References

[I]C. Mead, _Real-time analog computation in VLSI

neural networks", inthe FirstAnnual International

Neural Networks SocietyMeeting (Boston, 1988).

[2] W. Feller, An Introduction to Probability Theory and

Its Applications, 2nd edition (John Wiley, 1959) VoL
1, p. 58.

A.K. Jainand R.C. Dubes, Algorithms for Clustering

Data (PrenticeHall,1988).

E.W. Forgy, "Cluster analysisof multivariatedata:

efficiencyversus interpretabilityof classifications",

Biometric Soc. Meetings, Riverside,California.Ab-

stractin Biometrics,21, 768 11965).

J.B. MacQueen, _Some Methods for Classification

and Analysis of Multivariate Observations", Pro-

ceedingsofFifthBerkeley Symposium on Mathemat-

icalStatisticsand Probability,Vol.1,p. 281 (1967).

A.D. Gordon and J.T. Henderson, _Algorithm for

Euclidean sum of squaresclassifications,Biometrics,

3s, 3s5(1977).

D.J. McRae, _MIKCA: A FORTRAN IV iterative

k-means cluster analysis program s , Behavioral Sci-

ence, 16, 423 (1971).

M.R. Anderberg, Cluster Analysis for Applications

(Academic Press, 1973).

J.J. Hopfield and D.W. Tank, aNeural computation

of decisionsin optimisation problems_, Biological

Cybernetics, 52, 141 (1985).

Neural Networks for Computin9, edited by J.S.

Dunker (American Instituteof Physics,1986).

B. Kamgar-Parsi and B. Kamgar-Parsi, _An efficient
model of neural networks for optimization", in Pro-

ceedings of the IEEE First International Conference

on Neural Networks, edited by M. Caudill and C.

Butler, Vol.3, p. 785 (1987).

C.W. Gear, Numerical Initial Value Problems in Or-

dinary Differential Equations (Prentice-Hall, 1971}.

H.S. Stone, _Problems ofParallelComputation", in

Complexity of Sequential and Parallel Numerical Al-

gorithms, edited by J.F. Traub (Academic Press,

1973).

J.E. Devaney, aThe MPP - a TotallyDifferentAp-

proach to Programming n, presented at the IEEE

Computer SocietyWorkshop on Computer Architec-

tureforPattern Analysisand Image Data Base Man-

agement (1985).

37

o • o

° _. O_o

oOO° _° !
o

°o

a

oo ooo

°o a ° _ a

°

:o_¥oo _o :°o° °

°o.
o o °%_ o

a

°

° a
° •

°o e ° Oo o •

o_O_o_ °OoO o •
o • O_Ooo _o

o °_ o o

o o ooO_o_g°o
o oO

• _o_ ° °o

o o oQ O

° Oo _ o ° ® °o

°% ° °_d_ °

_o_e o

e

o
o o

• o o

Oo #

°o°'. o o :° o
o o °_ooo °_ _

° _ ,ID

° o

o oo : o °%

°° ° !I o_ _ _ o o _

o_ _ oo o o°o_° o_ _ o _

_ o _o o
_oo o o _.°

J

°o o ° o °° o °Q f

O_oo°o°o o _ ,
0

o o_
o _ o °

%0 Oo_ o
o o

oo #o Oo °ao o
• o° o

° o o °°

o

o

Fig. I. 128 points divided among 5 clustersand re-

spectively0,10,25,50,75,100% uniform background in

a,b,c,d,e,f.

!50
i

§

I , ,

_SO0 20_0

Fig. 2. Number of trials not converged versus iteration

for the data in Fig. la. (0 % background) {loop is the

iteration number).

7

J

/

Fig. 3. Trajectories of the five cluster centroids for all 128

trials for the data in Fig. la. (0 % background). Lower
left corner of Fig. la. corresponds to back top corner in
this figure

Fig. 4. Trajectories of the five cluster centroids for the

data in Fig. lf. {uniform distribution - 100% back-

ground).

38

